Package index
-
calculate_bootstrap_ci()
- Calculate Bootstrap Confidence Intervals
-
calculate_r_estimates()
- Calculate R From Incidence and Serial Interval
-
calculate_si_probability_matrix()
- Calculate Serial Interval Probability Matrix
-
calculate_truncation_correction()
- Calculate Right Truncation Correction
-
conv_tri_dist()
- Convolution of the triangular distribution with the mixture component density (continuous case)
-
create_day_diff_matrix()
- Create Day Difference Matrix
-
f0()
- Calculate f0 for Different Components
-
f_gam()
- Helper function to plot the fit of the serial interval distribution assuming an underlying gamma distribution
-
f_norm()
- Helper function to plot the fit of the serial interval distribution assuming an underlying normal distribution
-
flower()
- Calculate flower for Different Components
-
fupper()
- Calculate fupper for Different Components
-
generate_case_bootstrap()
- Generate Case Bootstrap Sample
-
generate_synthetic_epidemic()
- Generate synthetic incidence data from a known reproduction number
-
integrate_component()
- Integrate Component Function
-
integrate_components_wrapper()
- Wrapper function to for integrate_components()
-
plot_si_fit()
- Plot the epidemic curve and fitted serial interval distribution
-
si_estim()
- Estimate serial interval using the EM Algorithm as developed by Vink et al. (2014)
-
smooth_estimates()
- Apply Smoothing to Estimates
-
wallinga_lipsitch()
- Estimate time-varying reproduction number using Wallinga-Lipsitch method with bootstrap confidence intervals
-
weighted_var()
- Calculate weighted variance
-
wt_loglik()
- weighted likelihood for optimising parameters assuming underlying gamma distribution each point adds to likelihood given weight belonging to component 2: w2