Skip to contents

All functions

calculate_bootstrap_ci()
Calculate Bootstrap Confidence Intervals
calculate_r_estimates()
Calculate R From Incidence and Serial Interval
calculate_si_probability_matrix()
Calculate Serial Interval Probability Matrix
calculate_truncation_correction()
Calculate Right Truncation Correction
conv_tri_dist()
Convolution of the triangular distribution with the mixture component density (continuous case)
create_day_diff_matrix()
Create Day Difference Matrix
f0()
Calculate f0 for Different Components
f_gam()
Helper function to plot the fit of the serial interval distribution assuming an underlying gamma distribution
f_norm()
Helper function to plot the fit of the serial interval distribution assuming an underlying normal distribution
flower()
Calculate flower for Different Components
fupper()
Calculate fupper for Different Components
generate_case_bootstrap()
Generate Case Bootstrap Sample
generate_synthetic_epidemic()
Generate synthetic incidence data from a known reproduction number
integrate_component()
Integrate Component Function
integrate_components_wrapper()
Wrapper function to for integrate_components()
plot_si_fit()
Plot the epidemic curve and fitted serial interval distribution
si_estim()
Estimate serial interval using the EM Algorithm as developed by Vink et al. (2014)
smooth_estimates()
Apply Smoothing to Estimates
wallinga_lipsitch()
Estimate time-varying reproduction number using Wallinga-Lipsitch method with bootstrap confidence intervals
weighted_var()
Calculate weighted variance
wt_loglik()
weighted likelihood for optimising parameters assuming underlying gamma distribution each point adds to likelihood given weight belonging to component 2: w2